
YOUNG MINDS

DIGITAL
LEARNING
MASTERCLASSES

Games & Projects for Students Aged 7-18

D I G I T A L L E A R N I N G | M I N D S U N D E R G R O U N D

Digital
Learning
Today
WHY START NOW?

Many people think that coding is an impossible

skill to learn, or that it’s something best left

to geeky geniuses. This is just a myth. Anyone can

learn to code, and indeed, more people should learn

to code. Mark Zuckerberg and Bill Gates recently

launched a video to get more kids into coding - if

they think it's a good idea, so do we!

What Skills
Can Coding
Teach You?
THINKING

COMPUTATIONALLY AND

CREATIVELY

Learning to code has a plethora of benefits for

children - not only can it be hugely enjoyable and

creative, but learning to code helps students think

critically in a structured way, teaching them to

think computationally to approach a wide variety of

problems and solve them. This isn't just a great

skill for software engineers, mathematicians

and logicians it's useful for everyone and students

will see benefits across a wide range of subjects.

Coding is a great display of initiative &

intelligence - tech is everywhere, everything is

being automated and there is no better time to stay

ahead of the curve.

PROGRAMMING BENEFITS
101

D I G I T A L L E A R N I N G | M I N D S U N D E R G R O U N D

IT'S EXTREMELY

ENGAGING

Often people don’t realise how

fun it is until they actually

have a go at coding something.

This is because the goal of

coding is to build something

that solves a problem, and

this idea of building things

is fundamental to why coding

is fun - think of it like

solving a logic puzzle

(Sudoku), or building with

lego.

THINKING

COMPUTATIONALLY

Programming languages are

deterministic, and often require

you to build up larger features

out of smaller individual

functions. This means that over

time, you naturally end up

thinking in a more computational

way. This aids problem-solving

efficiency and allows students

to abstract away from specific

problems & find general

solutions that aoply in other

situations.

THINKING

CREATIVELY

Working out how to solve a

problem requires creativity.

Programming is the same –

there are many ways to

approach and solve the same

problem. No two programs are

written the same way; in fact,

experienced coders even seem

to develop their own style of

coding.

You can also use code

creatively when making art. A

huge range of art is created

digitally – think about every

Pixar film you’ve ever seen.

HIGHER EDUCATION

& CAREERS

If you want to attend an elite

university, you should expect to

have in-person interviews, where

you will be asked about your

skills and interests, such as

coding. Coding opens up a huge

range of career opportunities.

The McKinsey Global Institute

even reports that by 2030, 800

million jobs worldwide will have

been replaced by robotic

automation. You could be the

person who programs all the

robots.

D I G I T A L L E A R N I N G | M I N D S U N D E R G R O U N D

FROM THEORY TO PRACTICE

Programming
Masterclasses

PROJECTS & GAMES

D I G I T A L L E A R N I N G | M I N D S U N D E R G R O U N D

Coding a Maze
This activity helps beginners to think like a programmer. The task starts by

challenging the student to write a series of commands (‘left’,’right’,

‘forward’ etc) to guide a lego figure (or similar) step by step through a

maze, which can be built from anything but lego works well. Students quickly

realise that it’s a bit tedious to command the figure to move forward 7 times

in a row, it’s much easier to say “Do this next command 7 times.” This

naturally introduces the concept of ‘for’ or ‘while’ loops. The progression of

this task challenges the student to write a general set of instructions to

solve the maze put in front of them. Maze variations ensure the task can be

tailored to any age or experience.

If the student tries to implement these general set of instructions on another

maze it is unlikely to be able to solve the maze. As an extension task, more

experienced students can be prompted to think about how they could adapt their

set of instructions to solve any maze, no matter the complexity or size.

This task aims to develop the programmer’s ‘way of thinking’ and allows

students of any age to learn coding concepts without needing to learn a text-

based programming language. In addition, this task helps younger children to

think from a point of reference different than their own. The child’s left may

not be the same as the figure-in-the-maze’s left, even the youngest children

can learn this valuable skill of switching reference frame.

7-11
BEGINNER+

D I G I T A L L E A R N I N G | M I N D S U N D E R G R O U N D

Morse Code

 Working with ‘strings’

Conditional Execution

For’ Loops

Defining and calling functions

'Print’ statements

Morse code is one of the simplest and most versatile methods of

telecommunication in existence. It’s been used for more than 160 years

(longer than any other electronic encoding system!) Morse code encodes

text by replacing letters with dots and dashes. Typically, these dots and

dashes are transmitted using electric current but they can also be

generated by turning a light on and off, tapping an object or blowing on a

whistle making it a useful mode of communication in an emergency.

This task requires the student to develop a program that automatically

converts English text input by a user into Morse Code dots and dashes and

vice versa. As an extension exercise the program could be further

developed to play the encrypted Morse code text over the speakers of a

computer.

During this task the student will learn various fundamentals of Python

programming:

This task would suit any programmer from complete beginner to intermediate

as there is plenty of scope to simplify or make more complex depending on

the student.

7-11
BEGINNER+

D I G I T A L L E A R N I N G | M I N D S U N D E R G R O U N D

Ceasar Cipher
The Ceasar cipher is one of the earliest known and simplest of ciphers and

is a type of substitution cipher where the letters of the alphabet are

shifted by a certain number of places down the alphabet. The number of

places the letters are shifted is known as the key and can be from 1 to

25. For example, a shift of 1 would mean that A is shifted to B, and B to

C…etc.

The transformation can be represented by aligning two alphabets; the

cipher alphabet is the plain alphabet rotated left or right by some number

of positions. For instance, here is a Caesar cipher using a left rotation

or ‘key’ of three places:

Plain: ABCDEFGHIJKLMNOPQRSTUVWXYZ

Cipher: XYZABCDEFGHIJKLMNOPQRSTUVW

When encrypting, a person looks up each letter of the message in the

"plain" line and writes down the corresponding letter in the "cipher"

line.

Plain text: THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG

Cipher text: QEB NRFZH YOLTK CLU GRJMP LSBO QEB IXWV ALD

Deciphering is done in reverse, with a right shift of 3.

7-11
BEGINNER+

D I G I T A L L E A R N I N G | M I N D S U N D E R G R O U N D

Working with 'strings'

Conditional Execution

'For' Loops

Defining and Calling Functions

'Print' Statements

The Caesar cipher is named after Julius Caesar, who used the same shift of

three to protect messages of military significance. While Ceasar and his

friends used two rotating disks containing the letters of the alphabet to

encrypt and decrypt their letters, this task requires the student to

develop a Python or R program to carry out the process. The program will

prompt a user for a piece of text to be encrypted and the number of places

to shift each letter otherwise known as the ‘key’. The program will return

an encrypted version of the text which can only be decrypted by someone

who has the cipher key. The program will also be able to decrypt the

response to ensure the reply is readable.

During this task the student will learn various fundamentals of Python

programming:

This task would suit any programmer from complete beginner to intermediate

as there is plenty of scope to simplify or make more complex depending on

the student.

7-11
BEGINNER+

D I G I T A L L E A R N I N G | M I N D S U N D E R G R O U N D

Rock - Paper -
Scissors
HUMAN VS COMPUTER

Importing packages

Working with values and variables

Conditional Execution

Loops

'Print' statements

In this task, the student will develop a Python program which can play

Rock – Paper – Scissors (RPS) against a human player. They will utilise

the fact that humans struggle to be truly random to ensure the program

will beat a human opponent more than half the time. The program you create

must implement the rules of RPS and provide the framework for the game to

be played against a human player. In addition, the program must keep a

record of the previous selections and use the information to make a

weighted choice in an attempt to defeat the human opponent.

While completing this task, the student will learn various fundamentals of

Python programming:

This task would suit a student with some python programming experience or

a beginner looking for something to work on alongside learning the basics.

11-18
BEGINNER-INTERMEDIATE

D I G I T A L L E A R N I N G | M I N D S U N D E R G R O U N D

FizzBuzz
THE TRUE TEST OF A PROGRAMMER

Importing packages

Working with values and variables

Conditional Execution

Loops

‘Print’ statements

FizzBuzz is a game for at least 2 people. In its simplest form the players

take it in turns to count from 1 to 100, but multiples of three are

replaced with ‘Fizz’, multiples of five are replaced with ‘Buzz’ and

multiples of both three and five are replaced with FizzBuzz’. This task

challenges the student to develop a program to replace one human player.

The program they create must implement the rules of FizzBuzz, provide the

framework for the game to be played against a human player and check the

answers input by the human opponent during the game. In addition, the

program must keep a record of the ‘high score’ – the highest number

achieved by the human opponent playing the game without an error.

While completing this task, the student will learn various fundamentals of

Python programming:

This task suits a student with some python or R programming experience or

a beginner looking for something to work on alongside learning the basics.

11-18
BEGINNER-INTERMEDIATE

D I G I T A L L E A R N I N G | M I N D S U N D E R G R O U N D

Go Fish

Importing packages

Defining and calling functions

Working with values, variables and classes

Conditional Execution

‘While’ and ‘For’ Loops

‘Print’ statements

Go Fish is a classic card game for at least two players. The rules can

vary slightly, but generally each player is dealt nine cards and aims to

complete sets by requesting cards from the opposition. On their turn, a

player asks their opponent for a given rank (e.g. such as three kings). If

the opponent has any cards of the named rank they must hand over all such

cards and the player can ask again. If the opponent has no cards of the

named rank, the requester draws a card from the deck and their turn ends.

Whenever a player completes a set, it is removed from their hand. The game

ends when every book is complete and the player with the most books wins.

Creating a python program to enable a user to play against a computer at

‘Go Fish’ is a fairly complex task. It involves implementing the rules of

the game, the game prompts and interfaces as well as keeping track of the

cards in the remaining deck and the hands of the players.

While completing this task, the student will build on the fundamentals of

Python programming:

This task suits a competent student with significant Python experience.

11-18
INTERMEDIATE+

D I G I T A L L E A R N I N G | M I N D S U N D E R G R O U N D

Battleships
A LOGICAL AND CRITICAL THINKING GAME

Working with 'strings’ and ‘integers’

Conditional Execution

‘For’ Loops

Defining and calling functions

Print’ statements

Battleships is a two player board game. Each player positions ships on a 9

x 9 grid hidden from view of the other player. The players take it in

turns to suggest positions of the ships on the other players board, if

they hit one of the opponent’s ships they are allowed to go again, if they

miss their goes is over. Both players keep a record of their hits and

misses and the game is over when one player has exposed all of the other

player’s ships.

The student will develop a program that allows a computer to play against

a human. As well as building the game framework, the program must take

input coordinates as selected by the human, output ‘hit’ or ‘miss’ as well

as keep a record of the previous hits.

During this task the student will learn various fundamentals of Python

programming:

This task would suit an intermediate ;evel student who wants a challenge!

11-18
INTERMEDIATE+

